
Simulation Guided Memory Analyzer

SiGMA
(C) COPYRIGHT International Business Machines Corp. 2003 All Rights Reserved.

Simone Sbaraglia
Advanced Computing Technology Center

IBM Research
sbaragli@us.ibm.com

Phone: +1-914-945-2546
Fax: +1-914-945-4269

Version 2.5 - July 19, 2004

LICENSE TERMS:

The Simulation Guided Memory analyzer (SiGMA) is distributed under a
nontransferable, nonexclusive, and revocable license. The SiGMA software is provided
"AS IS". IBM MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IBM has no obligation to defend or indemnify against any
claim of infringement, including, but not limited to, patents, copyright, trade secret, or
intellectual property rights of any kind. IBM is under no obligation to maintain, correct,
or otherwise support this software. IBM does not represent that SiGMA will be made
generally available. IBM does not represent that any software made generally available
will be similar to or compatible with SiGMA.

Table of Contents

1. The Simulation Guided Memory Analyzer
2. Requirements
3. Instrumentation
4. Running the application
 4.1. Direct Mode
 4.2. From Trace
 4.3. The Architecture File
 4.4. Data Structure Padding
5. Output
6. Derived Metrics

7. Known Limitations
8. Release history

1. The Simulation Guided Memory
Analyzer
The Simulation Guided Memory Analyzer (SiGMA) is a toolkit designed to help
programmers to understand the precise memory references in scientific programs that are
causing poor utilization of the memory subsystem. Fine-grained information such as this
is useful for tuning loop kernels, understanding the cache behavior of new algorithms,
and to investigate how different parts of a program compete for and interact within the
memory subsystem.

The SiGMA toolkit consists of a pre-execution tool that locates and instruments all
instructions that refer to memory locations, a runtime data collection tool that performs a
highly efficient lossless compression of the stream of memory addresses generated by the
instrumentation, and a set of simulation and analysis tools that process the compressed
memory reference trace to provide programmers with tuning information.

2. Requirements
SiGMA was developed for performance analysis of Fortran and C applications, compiled
with IBM XLC and/or XLF compilers, running on IBM Power3 and Power4 systems,
under AIX 5L.

In order to use SiGMA, users are required to define an environment variable $SIGMA,
which points to the path of the SiGMA installation.

3. Instrumentation
Instrumentation is performed automatically at the binary level to capture runtime
information about memory operations. It uses a binary instrumentation approach, as
opposed to source instrumentation, so that the gathered data reflects actual memory
references generated by optimizing compilers. In addition, the source code is not required
as long as the debugger information is present in the binary (i.e. the binary must have
been produced with the “-g” option).

The instrumentation task is accomplished with the "sigmaInst” application, that can be
found in the $SIGMA/bin directory.

To instrument a binary appbin, the “-d” option of sigmaInst must be used, as in

sigmaInst –d appbin

This will produce an instrumented binary appbin.inst. By default, the application is
instrumented to run a direct simulation (see Section 4 for a description of the available
execution modes). To generate a trace file instead, the command would be:

sigmaInst –d –dback tr appbin

Other useful sigmaInst options are:

-dlink: pass options to the linker: if the application was linked with any
special argument, this argument has to be passed again to
sigmaInst. For example, if the application was linked with the
arguments “-lessl –bmaxdata:0x60000000”, then instead of
“sigmaInst –d appbin”, the command would be:

sigmaInst –d –dlink “-lessl –bmaxdata:0x60000000”
appbin

-dmpi: use this flag to instrument an MPI application. Each MPI task will
generate a separate md profile (or trace file), identified by its MPI
task id.

-domp: instrument an OpenMP application. Multiple streams will be
generated, with no synchronization.

-p descr-file lib app: insert user-probes in the binary. Please refer to the file “up.pdf’ in
the SiGMA distribution for the details on user probes

-dyn: use this flag to enable dynamic tracing (see later for explanation)

-sdyn: use this flag to enable slow dynamic tracing (see later for
explanation)

-dstatic: relink the binary statically, to instrumented functions and
load/store operations in shared libraries.

-dbuf n: specify the buffer size in pages (default is 1). A larger buffer leads
to faster execution, especially with large applications, but will
require more memory to run.

-dfunc f1,…,fn: specify which functions to instrument. By default, all the functions
that are statically linked into the executable appbin will be
instrumented. The function names must be typed exactly as they
appear in the binary. Use “sigmaInst –funct appbin” to display all
the functions in the binary.

-dfile f1,…,fn: specify which files to instrument. If a file is selected, all the
functions in that file will be instrumented. Use “sigmaInst –filet
appbin” to display all the files in the binary.

-dfuncf <filename>: read the functions to instrument from the file filename.

-dfilef <filename>: read the files to instrument from the file filename.

-dxfunc f1,…,fn: specify which functions to exclude from the instrumentation. Can
be combined with the other selection options.

-dxfile f1,…,fn: specify which files to exclude from the instrumentation. If a file is
excluded, all the functions in that file are excluded from the
instrumentation, unless a –dfunc statement that selects them
appears later in the command line.

-dxfuncf <filename>: read the functions to exclude from the instrumentation from the file
filename.

-dxfilef <filename>: read the files to exclude from the instrumentation from the file
filename.

-dout outbin: specify the instrumented binary name (appbin.inst by default).

Please run sigmaInst with no arguments for the full list of options.

For examples of how to instrument an application refer to the examples directory in
$(SIGMA)/doc/examples.

Dynamic Tracing under program control

In addition to statically specifying which functions or files to instrument, using the
–dfunc or –dfile flags of sigmaInst, it is also possible to annotate the application to start
and stop the sigma tracing dynamically under program control.

This functionality can be very useful to selectively analyze one portion or iteration of the
code, or to skip the initialization steps and more in general in all the situations where the

code to analyze is not enclosed in a set of functions or changes dynamically while the
application runs.

In order to use this facility, #include the header file $SIGMA/include/signal_sigma.h in
your application and link the application with $SIGMA/lib/libsigma.a.

The binary application has then to be instrumented using the –dyn or –sdyn option of
sigmaInst. The –dyn mode is faster than the –sdyn mode since it is based on overwriting
the program image in memory, and is therefore preferable. The –sdyn mode is a simpler
implementation of the dynamic tracing facility that incurs some overhead in running the
application (both with tracing on and off). This mode is to be used only for testing and
debugging.

The application can then call signal_sigma(TRACE_ON, section_id) to activate the
SIGMA tracing and signal_sigma(TRACE_OFF, section_id) to deactivate it.

section_id is an integer used to identify the current code section. By using different
identifiers it is possible to profile different portions of the code (for example different
iterations in a loop) separately. A separate set of .md and .viz files is produced for each
section id.

Multiple sections are currently supported only with the fast –dyn dynamic mode. The
–sdyn dynamic mode just ignores the section id and assumes section id = 0.

Similarly, when dynamic tracing mode is not active the results are dumped under section
id 0.

 Please refer to $SIGMA/doc/examples/signal_sigma_example for an example of use of
the dynamic tracing facility.

The signal_sigma interface is a flexible mechanism to communicate signals or commands
to the SIGMA infrastructure, and can be used to generate commands like “dump the state
of the cache now”, “reset the cache” as well as changing memory parameters dynamically
(turn prefetcher on and off under program control etc).

The commands that are currently supported are:

• TRACE_ON: activate the SIGMA tracing
• TRACE_OFF:deactivate the SIGMA tracing
• ERASE_MEM: erase contents of memory
• ERASE_PREF: erase all prefetcher streams (reset prefetcher)
• ERASE_COLD: erase cold misses history (reset cold misses)
• RESET_MEM: completely reset memory (= ERASE_MEM +

ERASE_PREF + ERASE_COLD)

Please note that if the SIGMA tracing is turned off, when it is turned on again we assume
that the memory contains whatever was there at the moment that the tracing was turned
off (the state is “frozen” when the tracing is turned off, no cleanup occurs).

In order to reset the cache to a clean (cold) state, use the commands above.

The signal_sigma function prototype is

void signal_sigma(int code, int arg)

where code is one of the above (TRACE_ON, TRACE_OFF etc) and arg is an integer
argument currently used only if code is TRACE_ON or TRACE_OFF to identify the
code section. The arg value is disregarded in all other cases.

4. Running the Application
SiGMA has two modes of operation: "Direct" or "FromTrace". In Direct Mode execution
the simulation is performed "on-the-fly" when running the instrumented application,
while in the FromTrace mode, the user runs the instrumented application to generate a
trace file and then runs the simulator, which takes the trace file as input. The former is
faster since it does not require generating and reading the trace file, but might be
inconvenient if the user needs to test with different architecture specifications or data
structure configurations; since the application has to be re-executed for each new
simulation. In this case, FromTrace would be more effective, since one can generate the
trace file once and then experiment with different architectures or different data structure
layouts.

4.1. Direct Mode

In Direct mode execution the user generates an instrumented version of the application as
described in Section 3, then runs the instrumented binary (called appbin.inst here),
supplying the architecture specification file, as in ./appbin.inst –sigma architecture-file.

The machine specified in the architecture file is then simulated while the application runs,
and the metrics are collected in the file appbin.inst.mp_task.secN.machine.md, where
machine is the name of the machine as specified in the architecture file (see Section 4.3
for a description of the syntax of the architecture file), mp_task is the MPI task or 0 in the
case of serial applications and N is the section id as specified in
signal_sigma(TRACE_ON, section_id) or 0 if dynamic tracing is not used.

Examples of architecture specifications for Power3 and Power4 can be found in
$(SIGMA)/archs/sigmaArchPower3 and $(SIGMA)/archs/sigmaArchPower4.

If the application requires any arguments, they can be supplied before the –sigma switch,
as in:

./appbin.inst application-arguments –sigma architecture-file

Every argument preceding the "-sigma" switch will be passed uninterpreted to the
application appbin.inst.

It is also possible to apply a padding technique to the simulation by means of the "-
padding" option, as in:

./appbin.inst –sigma architecture-file -padding paddingfile

where paddingfile is the specification file for padding (see Section 4.4 for the syntax of
the padding specification file).

4.2. From Trace Mode

In FromTrace mode, the user instruments the application to generate a compressed trace
file first (by using the “-dback tr” option of sigmaInst). The trace file can then be used as
input to the simulator at a later time.

After instrumenting the application with sigmaInst –dback tr, the user runs the
application (without supplying any architecture file, just the application-specific
arguments, if any). As a result of this run, a compressed trace file "appbin.mp_task.cfz"
will be generated.

It is then possible to run the memory simulation for a machine specified in the
architecture file architecture-file by running:

$(SIGMA)/bin/sigmaMd appbin.mp_task.cfz –sigma architecture-file.

Again, it is possible to use a padding technique with:

$(SIGMA)/bin/sigmaMd appbin.mp_task.cfz –sigma architecture-file
-padding paddingfile.

Run sigmaMd with no arguments for a list of all options.
Please note that when generating a trace file in dynamic mode (i.e. when using the flags
“–dyn –dback tr” at the same time) the section id is disregarded and one single trace file
for all the sections is generated.

4.3 The Architecture File

The architecture file specifies the memory configuration to be used in the simulation. The
user can specify parameters such as number of cache level, line size, associativity etc. An
example of an architecture file is presented next.

##type name keyword number-of-machines
system s1 machines 1
##type name keyword #caches keyword #tlbs prefType ArithOpLatency
MemHitLatency Frequency(Mhz)
machine power3 caches 2 tlbs 1 p3 1 28
375
##type name szBts lnSzBts assoBts prefch replace writePolicy
computeCold Latencies(Load Store)
cache l1 16 7 7 no lru writeback yes
2 2
cache l2 22 7 0 no lru writeback no
6 6
tlb Tlb 20 12 1 no lru none no
112
end

The lines starting with "#" are comments. The first non-comment line of the file defines
the set of machines specified in the architecture file (called a system) and specifies the
number of machines composing the system. The syntax of the first line is the following,
where we indicate, with <parameter> a user supplied parameter and with keyword a
keyword:

• the keyword system
• <string>: the name of the system
• the keyword machines
• <integer>: the number of machines in the system

Then, for each machine of the system, the user specifies the memory layout of the
machine followed by the specification of each memory level.

In our example, the memory layout of the machine is specified by the line:

##type name keyword #caches keyword #tlbs prefType ArithOpLatency
MemHitLatency Frequency(Mhz)
machine power3 caches 2 tlbs 1 p3 1 28
375

and the various levels of the memory hierarchy are specified by the lines:
##type name szBts lnSzBts assoBts prefch replace writePolicy
computeCold Latencies(Load Store)
cache l1 16 7 7 no lru writeback yes
2 2
cache l2 22 7 0 no lru writeback no
6 6
tlb Tlb 20 12 1 no lru none no
112
end

The syntax for the line that specifies the memory layout is the following:

• the keyword machine
• <string>: name of the machine (no spaces)

• the keyword caches
• <integer>: number of cache levels
• the keyword tlbs
• <integer>: number of TLBs (only one supported with current release)
• one of the keywords p3 or p4 indicating which prefetcher should be used (Power3

or Power4)
• <integer>: latency (cycles) of an arithmetic operation (not used in current

release)
• <integer>: latency (cycles) of bringing data from main memory (memory hit)
• <integer>: frequency of the machine, in Mhz.

Each cache level has to be described by a line of the form:

cache l1 16 7 7 no lru writeback yes 2 2

whose syntax is the following:

• the keyword cache
• <string>: the name of the cache level (not used at the moment)
• <integer>: cache size in bits, i.e. if this number is 16 as in our example, the cache

size is 2^16=65536bytes.
• <integer>: line size in bits
• <integer>: associativity in bits
• one of the keywords yes or no indicating whether prefetching should be enabled

for the cache level
• one of the keywords lru, fifo or rand specifying the replacement algorithm (least-

recently used, first-in-first-out or random)
• one of the keywords writeback or writethru, to specify the cache type
• one of the keywords yes or no to specify whether cold misses should be computed

for the current cache level
• <integer>: the latency (in cycles) of a load operation from the cache level
• <integer>: the latency (in cycles) of a store operation from the cache level

The lines describing each cache level must come in order, i.e. L1, followed by L2, L3 etc.
After these lines there must be a line for each TLB level (however, there is only one level
supported at this time). This line has the form:
tlb Tlb 20 12 1 no lru none no 112

and the syntax is:

• the keyword tlb
• <string>: the name of the TLB level (not used at the moment)
• <integer>: TLB size in bits
• <integer>: page size in bits, in our example a page is 2^12=4096 bytes.
• <integer>: associativity in bits

• one of the keywords yes or no indicating whether prefetching should be enabled
for the TLB level

• one of the keywords lru, fifo or rand specifying the replacement algorithm (least-
recently used, first-in-first-out or random)

• the cache type is ignored for TLBs
• one of the keywords yes or no to specify whether cold misses should be computed

for the current TLB level
• <integer>: the latency (in cycles) of a load operation from the TLB level

Note that the TLB size is not to be interpreted as bytes but as number of entries,
indicating that if the TLB has N entries, and the page size is 2^l, then the size n of the
TLB in bits is such that: N=2^(n-l). In our example, the page size is 4096 bytes (l = 12),
the TLB has 256 entries, therefore n is such that: 256=2^(n-12), i.e. n = 20. For example,
a TLB description to simulate large pages on the Power4 would be:

tlb Tlb 34 24 2 no lru none no 700

Multiple machines can be simulated at the same time, as shown in the following example:

##type name keyword number-of-machines
system s1 machines 2
##type name keyword #caches keyword #tlbs prefType ArithOpLatency
MemHitLatency Frequency(Mhz)
machine power3 caches 2 tlbs 1 p3 1 28
375
##type name szBts lnSzBts assoBts prefch replace writePolicy
computeCold Latencies(Load Store)
cache l1 16 7 7 no lru writeback yes
2 2
cache l2 22 7 0 no lru writeback no
6 6
tlb Tlb 20 12 1 no lru none no
112
end
##type name keyword #caches keyword #tlbs prefType ArithOpLatency
MemHitLatency Frequency(Mhz)
machine power4 caches 3 tlbs 1 p4 1
250 1300
##type name szBts lnSzBts assoBts prefch replace writePolicy
computeCold Latencies(Load Store)
cache l1 15 7 1 yes fifo writethru yes
2 4
cache l2 20 7 3 no lru writeback no
12 14
cache l3 27 9 3 no lru writeback no
102 104
tlb Tlb 22 12 2 no lru none no
700
end

4.4. Data Structure Padding
The padding specification file defines parameters for data structure padding, which can
be either "external" or "internal". External padding of an array "A" with "N" bytes means
that a dummy data structure of size N bytes is inserted after A in the data structure layout,
while internal padding of a matrix means that one of the inner dimensions of the matrix is
increased by the specified amount.

The following is an example of a padding specification file:

#padding command file
INTERNAL u 1 1
INTERNAL v 1 3
EXTERNAL p 0 8

Lines beginning with "#" are comments. The padding command file defines a list of
padding specifications. The various padding specifications are applied in the order in
which they appear in the file. The syntax of each specification line in the padding file is
the following:

• one of the keywords INTERNAL or EXTERNALto specify internal or external
padding

• <string>: the name of the array to pad. The array must appear in the ".addr" file
for the application. This means that only external C variables and Fortran
common block variables can be padded with the current release.

• <integer>: the dimension to pad for internal padding. This field is ignored for
external padding.

• <integer>: the amount of padding to be applied. This field is interpreted
differently in internal and external padding: in internal padding this refers to the
amount by which the specified dimension has to be increased. For example the
line: "INTERNAL v 1 3" specifies that the first dimension of the matrix "v" has to
be increased by 3. So, if "v" is, for example, a 3x3 matrix, it would become a 6x3
matrix.

In external padding, this number is interpreted as number of dummy bytes to be
appended to the data structure.b

5. Output
The output file appbin.inst.mp_task.secN.machine.md contains the SiGMA memory
profile for the application, obtained by simulating the machine "machine" described in
the architecture file. The output file consists of four sections:

1. The first section, denoted by METRICS BY CACHE LEVEL, summarizes the
results for each level of cache and for the TLB. For each cache level, the

Architectural Information section summarizes the cache level characteristics
defined in the architecture file, followed by the counters and metrics for the cache
level.

2. The second section, denoted by METRICS BY FUNCTION, reports the metrics for
each function in the source code. The functions are sorted in decreasing order
based on an estimate (called "memtime") of the time spent in the memory
communication, defined as follows:

memtime = [memAcc*memLat +TLBmiss*TLBLat + SUMi=1,n(LdiHits*LdiLat
+StiHits*StiLat)]/Frequency

where "LdiHits" and "StiHits" are the number of loads and stores hits at level "i",
respectively, and the latencies ("LdiLat", "StiLat", "TLBLat", and "memLat")
parameters are the ones supplied by the user in the architecture file. The user can
consider this section as a "memory profile" of the functions in the code. The first
functions are the most expensive in terms of the "memtime" metric.

3. The third section, denoted by METRICS BY DATA, shows the collected metrics
for each data structure, sorted based on the memtime of each data structure.

4. The fourth section, denoted by METRICS BY DATA@FUNCTION, shows the
collected metrics for each function and for each data structure within the function.
Again, both the functions and the data structures within the functions are sorted
based on the memtime metric.

The output files appbin.inst.mp_task.secN.machine.data.viz and
appbin.inst.mp_task.secN.machine.func.viz can be visualized using the peekperf GUI
(peekperf appbin.inst.mp_task.secN.machine.data.viz or peekperf
appbin.inst.mp_task.secN.machine.func.viz).
The .data file provides a data-centric view of the metrics, similar to the METRICS BY
DATA section of the ASCII profile, whereas the .func file provides a control-centric view
of the metrics, similar to the METRICS BY FUNCTION view of the ASCII profile.

6. Derived Metrics Description
In addition to presenting the raw counter data, SiGMA also computes the following
derived metrics, which are based on the architecture parameters used as input to the
simulator:

• Accesses/Misses = Number of Accesses / Number of Misses
• Hit Ratio = Number of Hits / Number Accesses * 100
• L2 Traffic = Number of L2 Accesses * L1 Line Size
• L3 Traffic = Number of L3 Accesses * L2 Line Size
• Mem Traffic = Number of Mem Accesses * L3 Line Size

• Estimated Latency (cache) = Number of Hits * Latency / Frequency
• Estimated Latency (TLB) = Number of Misses * Latency / Frequency
• Estimated Latency (mem) = Number of Accesses * Latency / Frequency

Each one of these metrics can appear separately for load and store operations. For
example the Hit Ratio is reported as a total (Load + Store) and separately as a Load Hit
Ratio and Store Hit Ratio.

7. Known Limitations
64-bit applications are not supported.

8. Release History
Version 2.5:

• Implemented the “user probes” feature, that allows users to insert their probes into
the binary to instrument loads and stores, intercept and replace functions and so
on. The user’s probes will have access to the details of the cache simulation as
well as the symbolic mapping. Please refer to the “up.pdf” manual in the SiGMA
distribution for details and to the example directory for example of use.

• Implemented the –domp flag to instrument OpenMP applications.
• Added the –dstatic flag that allows to transparently relink the binary statically, in

order to instrument shared libraries and/or to intercept and replace (via the user
probes feature) functions in shared libraries.

Version 2.4:

• Added support for multiple code sections when using the dynamic –dyn mode. It
is now possible to profile different code sections separately by specifying a
section id when calling signal_sigma(TRACE_ON) or
signal_sigma(TRACE_OFF).

• Added a prototype of the data-flow model, to analyze the flow of data between
subroutines and identify the most memory intensive functions. The tool can be
activated with the –dback df flag of sigmaInst or by running sigmaDf in fromtrace
mode.
For example:

 sigmaInst –d –dback df appbin
 ./appbin.inst

Version 2.3:

• Implemented a more efficient dynamic tracing facility, based on overwriting the
binary image in memory. This facility is activate with the –dyn switch of
sigmaInst. The previous dynamic tracing mode present in version 2.2 is still
accessible with the –sdyn option.

Version 2.2:

• Added dynamic tracing facility to turn tracing on and off under program control
• Added support for MPI applications. Each MPI task generates a separate profile

and trace file. To instrument an MPI application it is necessary to specify the
–dmpi flag of sigmaInst.

• Fixed memory inefficiency when dealing with dynamic memory tracing, that
could lead to program crashes under certain conditions.

• Fixed several minor bugs.

Version 2.1.3:

 Major reengineering of the instrumentation approach: the instrumentation is now
performed at the binary level. Source code not required anymore.

 Added support for large applications linked with the –bmaxdata flag.
 Added support for local variables.
 Added Fortran90 support.
 Added support for dynamically allocated C and F90 variables.

Version 1.1.2:

 Fixed a problem on “sigmaInst” to reduce the number of "Unknown" symbol
types.

 Fixed bug on “sigmaInst” of dumping some global variables with address “0”.
 Fixed a problem of identifying variables defined as "file-global" in C programs.
 Fixed problem with variables being skipped because of file names not being

recognized.
 Extended sigmaCompile to also handle the following extensions: “.cc”, “.f90”,

“.F”, and “.C”.
 Fixed sigmaCompile bug in parsing base file name (file names with “.” Were

being lost).
 Fixed problem of SiGMA not compiling properly with certain variable types

(“M” types).
 Fixed documentation (this file) for corrected display of formulas in Sections 4.3

and 5.

Version 1.1:

 Initial Release

Top of Page

